SMT-RAT
24.02
Toolbox for Strategic and Parallel Satisfiability-Modulo-Theories Solving
|
Data Structures | |
class | ContractionCandidate |
struct | contractionCandidateComp |
class | ContractionCandidateManager |
class | HistoryNode |
class | IcpVariable |
struct | icpVariableComp |
Typedefs | |
template<template< typename > class Operator> | |
using | Contractor = carl::Contraction< Operator, Poly > |
typedef LRAModule< LRASettings1 >::LRAVariable | LRAVariable |
typedef std::set< const IcpVariable *, icpVariableComp > | set_icpVariable |
Enumerations | |
enum class | Updated { LEFT , RIGHT , BOTH , NONE } |
Functions | |
std::vector< Poly > | getNonlinearMonomials (const Poly &_expr) |
Obtains the non-linear monomials of the given polynomial. More... | |
std::pair< ConstraintT, ConstraintT > | intervalToConstraint (const Poly &_lhs, const smtrat::DoubleInterval _interval) |
Creates a new constraint from an existing interval. More... | |
bool | intervalBoxContainsEmptyInterval (const EvalDoubleIntervalMap &_intervals) |
Checks mIntervals if it contains an empty interval. More... | |
const LRAModule< LRASettings1 >::LRAVariable * | getOriginalLraVar (carl::Variable::Arg _var, const LRAModule< LRASettings1 > &_lra) |
using smtrat::icp::Contractor = typedef carl::Contraction<Operator, Poly> |
Definition at line 24 of file ContractionCandidate.h.
Definition at line 33 of file IcpVariable.h.
typedef std::set<const IcpVariable*, icpVariableComp> smtrat::icp::set_icpVariable |
Definition at line 336 of file IcpVariable.h.
|
strong |
Enumerator | |
---|---|
LEFT | |
RIGHT | |
BOTH | |
NONE |
Definition at line 22 of file IcpVariable.h.
const LRAModule< LRASettings1 >::LRAVariable * smtrat::icp::getOriginalLraVar | ( | carl::Variable::Arg | _var, |
const LRAModule< LRASettings1 > & | _lra | ||
) |
bool smtrat::icp::intervalBoxContainsEmptyInterval | ( | const EvalDoubleIntervalMap & | _intervals | ) |
std::pair< ConstraintT, ConstraintT > smtrat::icp::intervalToConstraint | ( | const Poly & | _lhs, |
const smtrat::DoubleInterval | _interval | ||
) |