carl  24.04
Computer ARithmetic Library
carl::formula Namespace Reference

Namespaces

 aux
 
 symmetry
 

Typedefs

using Symmetry = std::vector< std::pair< Variable, Variable > >
 A symmetry $\sigma$ represents a bijection on a set of variables. More...
 
using Symmetries = std::vector< Symmetry >
 Represents a list of symmetries. More...
 

Functions

template<typename Poly >
Symmetries findSymmetries (const Formula< Poly > &f)
 
template<typename Poly >
Formula< Poly > breakSymmetries (const Symmetries &symmetries, bool onlyFirst=true)
 
template<typename Poly >
Formula< Poly > breakSymmetries (const Formula< Poly > &f, bool onlyFirst=true)
 

Typedef Documentation

◆ Symmetries

using carl::formula::Symmetries = typedef std::vector<Symmetry>

Represents a list of symmetries.

Definition at line 19 of file symmetry.h.

◆ Symmetry

using carl::formula::Symmetry = typedef std::vector<std::pair<Variable,Variable> >

A symmetry $\sigma$ represents a bijection on a set of variables.

For every entry in the vector we have $\sigma(e.first) = e.second$.

Definition at line 14 of file symmetry.h.

Function Documentation

◆ breakSymmetries() [1/2]

template<typename Poly >
Formula<Poly> carl::formula::breakSymmetries ( const Formula< Poly > &  f,
bool  onlyFirst = true 
)

Definition at line 78 of file symmetry.h.

◆ breakSymmetries() [2/2]

template<typename Poly >
Formula<Poly> carl::formula::breakSymmetries ( const Symmetries symmetries,
bool  onlyFirst = true 
)

Definition at line 73 of file symmetry.h.

◆ findSymmetries()

template<typename Poly >
Symmetries carl::formula::findSymmetries ( const Formula< Poly > &  f)

Definition at line 68 of file symmetry.h.