SMT-RAT  24.02
Toolbox for Strategic and Parallel Satisfiability-Modulo-Theories Solving
smtrat::cad::projection::mccallum Namespace Reference

Contains the implementation of McCallums projection operator as specified in [23]. More...

Functions

template<typename Poly , typename Callback >
void single (const Poly &p, carl::Variable variable, Callback &&cb)
 Implements the part of McCallums projection operator from [23] that deals with a single polynomial p: $ coefficients(p) \cup \{ discriminant(p) \} $. More...
 
template<typename Poly , typename Callback >
void paired (const Poly &p, const UPoly &q, carl::Variable variable, Callback &&cb)
 Implements the part of McCallums projection operator from [23] that deals with two polynomials p and q: $ \{ resultant(p, q) \} $. More...
 

Detailed Description

Contains the implementation of McCallums projection operator as specified in [23].

Function Documentation

◆ paired()

template<typename Poly , typename Callback >
void smtrat::cad::projection::mccallum::paired ( const Poly p,
const UPoly q,
carl::Variable  variable,
Callback &&  cb 
)

Implements the part of McCallums projection operator from [23] that deals with two polynomials p and q: $ \{ resultant(p, q) \} $.

Definition at line 35 of file McCallum.h.

Here is the call graph for this function:
Here is the caller graph for this function:

◆ single()

template<typename Poly , typename Callback >
void smtrat::cad::projection::mccallum::single ( const Poly p,
carl::Variable  variable,
Callback &&  cb 
)

Implements the part of McCallums projection operator from [23] that deals with a single polynomial p: $ coefficients(p) \cup \{ discriminant(p) \} $.

Definition at line 19 of file McCallum.h.

Here is the call graph for this function:
Here is the caller graph for this function: